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ABSTRACT

We propose a novel framework for speaker recognition in which
extraction of sufficient statistics for the state-of-the-art i-vector
model is driven by a deep neural network (DNN) trained for auto-
matic speech recognition (ASR). Specifically, the DNN replaces the
standard Gaussian mixture model (GMM) to produce frame align-
ments. The use of an ASR-DNN system in the speaker recognition
pipeline is attractive as it integrates the information from speech
content directly into the statistics, allowing the standard backends
to remain unchanged. Improvement from the proposed framework
compared to a state-of-the-art system are of 30% relative at the
equal error rate when evaluated on the telephone conditions from
the 2012 NIST speaker recognition evaluation (SRE). The proposed
framework is a successful way to efficiently leverage transcribed
data for speaker recognition, thus opening up a wide spectrum of
research directions.

Index Terms— deep neural network, speaker recognition

1. INTRODUCTION

Recently, the speaker verification community has seen a significant
increase in accuracy from the successful application of the i-vector
extraction paradigm [1]. This framework can be decomposed into
three sequential stages: the collection of sufficient statistics, the ex-
traction of i-vectors and a probabilistic linear discriminant analysis
(PLDA) backend. The collection of sufficient statistics is a process
where a sequence of feature vectors (e.g., mel-frequency cepstral
coefficients (MFCC)) are represented by the Baum-Welch statistics
obtained with respect to a GMM, refered to as universal background
model (UBM). These statistics are highly dimensional, and are con-
verted into a single low-dimensional feature vector — an i-vector —
that represents important information about the speaker and all other
types of variability in a given speech segment. Once i-vectors are
extracted, a PLDA model is then used to produce verification scores
by comparing i-vectors extracted from different utterances [2].

In the field of speech recognition, deep neural networks (DNN)
have recently been successfully used for acoustic modeling, achiev-
ing large improvements compared to standard GMM models [3, 4].
The DNN is a standard feed-forward neural network that is both
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much larger (a few thousand nodes per hidden layer) and much
deeper (roughly 5-7 hidden layers) than traditional neural networks.
Standard discriminative back-propagation algorithm and stochastic
gradient descent approach are typically used for the DNN training.

While the application of DNNs in other speech-related fields
is straightforward (each output node of the DNN represents one of
the classes of interest), a direct transition to speaker recognition is
much more challenging, as speakers are often unknown during sys-
tem training and each speaker has very little training data.

Our work aims to use a DNN trained for speech recognition to
guide speaker modeling, specifically, by using the output posteriors
as frame alignments for speaker modelling and i-vector extraction,
substituting for the role of the UBM in the standard framework. Our
use of a phonetically aware model is motivated by the fact that the
speech content’s effect on the speech signal have been mostly ig-
nored in work on text-independent speaker verification. Prior studies
on phone-, syllable- or word-dependent GMM systems [5, 6, 7, 8]
or constrained systems [9] have shown promise but are not widely
adopted due to their complexity and the marginal improvements in
accuracy they provide, even after combination with a baseline sys-
tem. A content-aware system, efficiently leveraging transcribed data,
opens up a wide spectrum of possibilities for research and improve-
ments in speaker recognition.

In this work, the DNN replaces the GMM to compute the pos-
terior of the frames with respect to each of the classes in the model.
While in the case of the GMM, the classes are the individual Gaus-
sians from a mixture model, in the case of the DNN, the classes
are senones (tied triphone states) obtained using a standard deci-
sion tree for automatic speech recognition. Once the posteriors are
computed, the zeroth and first order statistics are computed in the
standard way before they are fed into the state-of-the-art paradigm i-
vector / PLDA. An attractive benefit of our proposed approach is that
the features used for frame alignments and the sufficient statistics
can be different, as the two processes are now effectively decoupled.
As a result, the system can use optimal features to maximize phone
recognition accuracy for the frame alignments while using optimal
features for speaker recognition to compute the sufficient statistics
that are used to obtain the i-vectors and the final speaker verification
scores.

We first present the i-vector model, then briefly highlight the
roles of the UBM in speaker recognition. We then describe our DNN
approach before presenting results and conclusions.

2. THE I-VECTOR MODEL

In the i-vector model [1], the t-th speech frame x
(i)
t from the i-th

speech segment is assumed to be generated by the following distri-
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bution:

x
(i)
t ∼

∑
k

γ
(i)
kt N (µk + Tkω

(i),Σk) (1)

where the Tk matrices describe a low-rank subspace (called to-
tal variability subspace) by which the means of the Gaussians are
adapted to a particular speech segment, ω(i) is a segment-specific
standard normal-distributed latent vector, µk and Σk are the mean
and covariance of the k-th Gaussian, and γ

(i)
kt , as another inputs

of the i-vector model, are the alignments of x
(i)
t . In general, we

represent the alignments by the posterior of the k-th Gaussian, given
by:

γ
(i)
kt = p(k|x(i)t ) (2)

The i-vector used to represent the speech signal is the maximum a
posterior (MAP) point estimate of the latent vector ω(i). It is noted
that the alignments can be replaced by the prior (e.g., weights of the
UBM) in equation (1). In this case, the variational Bayes inference
has to be used in the training and the statistics have to re-collected in
every iteration [10].

Equation (1) models a process by which the frame for time t is
generated by first choosing a class k according to the distribution
given by Equation (2) and then generating the features according to
the Gaussian distribution for that class,N (µk+Tkω

(i),Σk). Note
that the classes can be defined in any way subject to the theoretical
restriction that the classes have a Gaussian distribution.

Given a speech segment, the following sufficient statistics can
be computed using the posterior probabilities of the classes:

N
(i)
k =

∑
t

γ
(i)
kt

F
(i)
k =

∑
t

γ
(i)
kt x

(i)
t

S
(i)
k =

∑
t

γ
(i)
kt x

(i)
t x

(i)
t

T
(3)

These sufficient statistics are all that is needed to train the subspace
T and extract the i-vector ω(i). Note that means and covariances
in Equation (1) can be updated during the subspace training pro-
cess, though this is not necessary to achieve good performance. The
reader can refer to [11] for more details.

3. ROLES OF THE UBM

The idea of a universal background model (UBM), represented by a
Gaussian mixture model (GMM) trained on many different speak-
ers, has been used in speaker recognition for many years as one
of the fundamental components across different frameworks. In the
GMM-UBM [12] framework, the UBM is used to derive the speaker-
specific model by adapting its means to the speaker’s data using a
MAP approach. The likelihood ratio of the test data given the UBM
and speaker-specific GMM is used for speaker recognition. In the
GMM-support vector machine (SVM) [13] framework, the speaker-
specific GMM is obtained just as in the GMM-UBM framework, but
the means of the GMM are concatenated to generate a vector called a
supervector, which is then input to the SVM. In the joint factor anal-
ysis (JFA) [11] framework, the UBM is used to compute the frame
alignments of an utterance to further generate its sufficient statistics.

In the i-vector framework, the standard approach uses the Gaus-
sians in the UBM as the classes k in Equation (1). This approach

ensures that the Gaussian approximation for each class is satisfied
(by definition) and provides a simple way to compute the posteriors
needed to compute the i-vectors: the likelihood of each Gaussian
is computed and Bayes rule is used to convert them into posteriors.
As explained in Section 2, only the posteriors of each frame for all
classes are needed to compute the i-vectors. This suggests that any
kind of model can be used to replace the Gaussian mixture model if it
defines K classes and can provide a posterior probability for a class
given a frame. In this work, we propose to replace the UBM-GMM
by a deep neural network (DNN) trained for ASR,

4. DNNS FOR ASR

In state-of-the-art ASR systems the pronunciations of all words are
represented by a sequence of senones Q (e.g., the tied-triphone
states). Each senone is used to model the tied states of a set of
triphones that are close in acoustic space. In general, the senone set
Q is automatically defined by a decision tree using the maximum
likelihood (ML) approach [14]. The decision tree is grown by ask-
ing a set of locally optimal questions that give the largest likelihood
increase, assuming that the data on each side of the split can be
modeled by a single Gaussian. The leaves of the decision tree are
then taken as the final set of senones.

Once the set of senones is defined, a Viterbi decoder is used to
align the training data into the corresponding senones. These align-
ments are used to estimate the observation probability distribution
p(x|q), where x is an observation vector in the training data and q
is the senone. The estimation of the observation probability distri-
bution and the realignment can be optimized alternatively and itera-
tively. Traditionally, a GMM was used to model this distribution. In
recent systems, a DNN is used to estimate the senone posteriors of
the acoustic features. The observation probability can be obtained
from the posteriors and priors of the senones using Bayes rule, as
follows:

p(x|q) = p(q|x)p(x)/p(q), (4)

where p(x|q) is the observation probability needed for decoding,
p(q) is the senone prior and p(q|x) is the senone posterior obtained
from the DNN. Figure 1 presents a flow diagram for training a DNN
for ASR. A pre-trained hidden markov model (HMM) ASR system
with GMM states is needed to generate alignments for the subse-
quent DNN training. The final acoustic model is composed of the
original HMM from the previous HMM-GMM system and the new
DNN.

Fig. 1. The flow diagram for training a DNN for ASR.

5. A DNN/I-VECTOR FRAMEWORK

We propose to use the classes k in Equation (1) as the senones de-
fined by the ASR decision tree. (instead of the Gaussian indices in



a GMM), By doing this, we make the assumption that each of these
senones can be accurately modeled by a single Gaussian. While a
strong assumption, results of this work show that it is a reasonable
one for the speaker recognition task.

The motivation behind defining the classes to model the pho-
netic content is as follows. The i-vector for a certain speech signal
models the shifts in means for each class k that are needed to max-
imize the likelihood of the model (Equation 1) for this signal. The
UBM-defined classes and posteriors have no inherent meaning. Each
Gaussian simply covers a part of the feature space which might in-
clude instances of different phones (or triphones) rather than a single
one, or even only some specific pronunciations of a certain phoneme.
If a speaker pronounces a certain phoneme, say /aa/, very differ-
ently from the general population, the frames corresponding to this
phoneme may possibly be aligned with Gaussians trained with other
phonemes, say /ao/. As a consequence the shift needed to adapt the
Gaussians corresponding to /aa/ will not be affected by the frames
in which the speaker was pronouncing /aa/. Only the means for the
Gaussians corresponding to /ao/ will be affected by these frames.
The final i-vector will then not contain information about the fact
that this speaker pronounces /aa/ very differently from others.

On the other hand, when the classes correspond to phonetic
senones and the posteriors are accurately computed to predict these
senones, the correct frames are used to estimate the shift in the means
for each senone. In the example above, the frames corresponding to
/aa/ would be assigned to the correct senone and a large shift in the
means will result for those senones. The i-vector will then reflect
the fact that this speaker pronounces /aa/ very differently from the
general population. Simply put, when the classes are defined by the
phonetic senones we are able to compare “apples to apples”: each
frame is compared with the training frames for the same phonemic
content.

One could argue that a similar benefit could be achieved by train-
ing a UBM in a supervised fashion on transcribed speech data; that
is, a UBM where the Gaussians are given by:

γ
(i)
kt ≈ p(k|x(i)t )

πk =
∑
i,t

γ
(i)
kt ,

µk =

∑
i,t γ

(i)
kt x

(i)
t∑

i,t γ
(i)
kt

,

Σk =

∑
i,t γ

(i)
kt x

(i)
t x

(i)
t

T∑
i,t γ

(i)
kt

− µkµ
T
k . (5)

where the ASR system is used to compute the posteriors for each
class k for each frame and πk is the prior of the class k.

This new supervised UBM could then replace the standard UBM
and be used to obtain the posteriors needed for i-vector computa-
tion by simply calculating the likelihood of each Gaussian and us-
ing Bayes rule to convert them to posteriors. Our experimental re-
sults below show that this approach does not lead to significant im-
provements with respect to using the standard UBM trained without
knowledge of the phonetic content. We belive that this is due to
the relatively poor accuracy of a GMM-based system for phonetic
recognition. If a frame corresponding to a certain senone is assigned
to another senone, we are no better off than when using the standard
unsupervised UBM.

Note that the feature vectors x(i)t correspond to the standard
MFCC features used for speaker recognition. That is, the UBM, su-
pervised or unsupervised, models features that have been optimized

for speaker recognition performance rather than ASR. Since context
in these features is provided through the deltas and double deltas,
they are not powerful enough to be used for accurately predicting
phonetic content when modeled by a simple GMM with only a few
thousands of Gaussians. For this reason, the UBM cannot be reliably
used to compute the posterior for a certain phonetic class.

To solve this problem we propose to directly use the posteriors
from the DNN in the ASR system as the γs in eq 3. In acoustic mod-
eling, DNNs have been shown to outperform GMM-based models
by a significant margin, due to the fact that they use longer context
windows and are discriminatively trained. As a result, a DNN model
gives a much better estimate of the senone posterior than the super-
vised UBM. Note that an important characteristic of our approach
is that one does not have to compromise by designing a feature that
works well for both ASR and SID. Indeed, the DNN system can
use completely different features from the features used for speaker
recognition, as long as it improves the estimate of the posterior prob-
ability. This is analogous to using a single, central alignment in a
multi-feature SID system as opposed feature-dependent alignments.
Figure 2 presents a flow diagram of the proposed DNN/i-vector hy-
brid framework.

Fig. 2. The flow diagram of the DNN/i-vector hybird farmework.

Much work in the past has pursued the similar goal of comparing
matched phonetic content when doing speaker recognition. Several
previous studies have investigated constraining or selecting cepstral
frames based on word or phone information. For example, the ap-
proaches in [5] and [6] condition a cepstral Gaussian mixture model
(GMM) on the identities of frequent words or syllables, respectively.
The methods described in [7] and [8] assign frames to broad phone
classes in order to score them with class-dependent GMMs. Finally,
in [9], a constrained cepstral modeling approach was proposed where
the constraints were designed to correspond to highly consistent or
distinctive phonetic and prosodic features. Most of these approaches
are meant to be used in combination with a baseline system since
they usually perform worse than the baseline system on their own.
Furthermore, they are usually required to make hard decisions about
the phones or words found in the signal. These approaches are not
widely used as the improvement in accuracy is usually marginal for
the increase in complexity.

We believe that the strength of our approach lies in the integra-
tion of the phonetic content information into a state-of-the-art base-
line system. Rather than designing a system for combination with
a baseline, we modify the baseline approach itself to consider this
additional source of information. This approach also exposes the
system to new data and information: that is, the data and transcripts



used to train the DNN. Furthermore, no hard decisions are made
about the phonetic content assignments, thus increasing the robust-
ness of the approach.

6. EXPERIMENTS

The proposed approach is evaluated on the two extended NIST
SRE’12 conditions: telephone speech (C2) and telephone speech
collected under noisy condition (C5). Since the DNN used in the
experiments is trained on a clean English telephone data set, the
microphone conditions (e.g., C1 and C3) and noisy telephone condi-
tion (C4) are not evaluated in this study. Even though C5 is a noisy
condition, the level of noise in those waveforms is known to be sig-
nificantly lower than for C4. Hence, as we will see, the DNN trained
on clean speech is still able to provide good posterior estimates for
this condition. Experiments are constrained to female trials to re-
duce the experimental burden incurred by the state-of-the-art system
used in NIST SRE’12.

Both the HMM-GMM and HMM-DNN ASR models are trained
on roughly 1300 hours of clean English telephone speech from
Fisher, Callhome, and Switchboard data sets. The cross-word tri-
phone HMM-GMM ASR with 3450 senones and 200k Gaussians
is trained with maximum likelihood (ML). The features used in the
HMM-GMM model are 39-dimensional MFCC features, including
13 static features (including C0) and first and second order deriva-
tives. The features were pre-processed with speaker-based cepstral
mean and covariance normalization (MVN). A seven-layer DNN
with 600 input nodes, 1200 nodes in each hidden layer and 3450
output nodes was trained with cross entropy using the alignments
from the HMM-GMM. The input layer of the DNN is composed of
15 frames (7 frames on each side of the frame for which predictions
are made) where each frame corresponds to 40 log Mel-filterbank
coefficients. The DNN is used to provide the posterior probability in
the proposed framework for the 3450 senones defined by a decision
tree.

The data used for training the UBM baseline system include
only the English telephone speech of the NIST SRE, Fisher, and
Switchboard sets, described in [15]. The frontend for this system
extracts 20 MFCC coefficients (including C0), augmented with first
order derivatives only to speed up the experiments without too much
degradation. A 2048 diagonal component UBM is trained in a
gender-dependent fashion, along with a 400 dimensional i-vector
extractor. The dimensionality of the i-vectors is further reduced to
300 by LDA, followed by length normalization and PLDA.

The same features are used in the DNN system to compute suf-
ficient statistics from the frame alignment given by the DNN. The
i-vector, LDA, PLDA dimension and paramters are the same as for
the baseline system.

As the DNN system effectively use 3450 classes, another
UBM/i-vector system is trained with a 4096 diagonal component
UBM for comparison. Results for a third baseline, replacing the
standard UBM with a supervised UBM obtained as described in
Section 5, are also shown.

Table 1 presents the performance of the baseline and proposed
systems on NIST SRE’12 conditions 2 and 5. System performance
is reported in terms of detection cost function (DCF) with different
effective priors, equal error rate (EER), and the false alarm rate at a
miss rate of 10% (FA@M10). The effective priors Ptar of DCF are
0.001 and 0.01 defined in NIST SRE’12 [16].

In both conditions, the supervised UBM with 3450 Gaussians
performs similarly to the unsupervised UBMs. On the other hand,

Table 1. The performance of three baseline systems compared to the
proposed DNN/i-vector approach. The UBMs with 2048 and 4096
Gaussians are trained using the standard EM approach while the
Gaussians in the 3450-component UBM are defined in a supervised
manner by the ASR senones as described in Section 5.

a. NIST SRE’12 C2 extended condition - female
System Ptar

0.001 Ptar
0.01 EER(%) FA@M10

UBM-EM(2048) 0.348 0.193 1.99 0.13
UBM-EM(4096) 0.333 0.184 1.81 0.11
UBM-sup(3450) 0.375 0.211 2.10 0.18
DNN 0.254 0.139 1.39 0.04

b. NIST SRE’12 C5 extended condition - female
System Ptar

0.001 Ptar
0.01 EER(%) FA@M10

UBM-EM(2048) 0.421 0.252 2.84 0.36
UBM-EM(4096) 0.401 0.237 2.55 0.26
UBM-sup(3450) 0.451 0.272 2.94 0.44
DNN 0.291 0.177 1.92 0.10

we observe very large improvements using our proposed DNN/i-
vector approach across all measurements for both conditions. In
condition 2, the proposed DNN-based approach provided roughly
25 – 35% relative improvement on Ptar

0.001, Ptar
0.01, and EER, and 70%

on FA@M10. More surprisingly, similar improvements are observed
on condition 5 as well although the DNN is trained on clean data
only. The results clearly confirm the importance of the posterior es-
timation in the i-vector model.

7. CONCLUSION AND FUTURE WORKS

In this work, we propose a novel scheme for speaker recognition that
provides large improvements over current state-of-the-art technol-
ogy by replacing the traditional UBM-GMM paradigm. The frame-
work tightly integrates speech recognition in the speaker modeling
process by using a DNN trained for phone recognition instead of a
UBM-GMM to produce frame posteriors for the computation of i-
vectors. The DNN produces posteriors for tied triphone state classes
determined by a standard ASR decision tree. Sufficient statistics for
i-vector computation are then extracted using these posteriors fol-
lowed by a state-of-the-art backend which remains unchanged. This
allows the system to factor out content information by comparing
speakers over the same phonetic units, an approach similar to that
taken in forensic comparisons.

We show the DNN approach significantly improved the i-vector
speaker recognition system as compared to the traditional UBM-
GMM approach in two NIST SRE’12 conditions. At a miss rate
of 10%, the relative improvements in false alarm rate are on the or-
der of 70% to 80% relative to the state-of-the-art systems, and the
equal error rate decreases by 30% relatively.

The success of the proposed approach opens up a wide range
of research directions for speaker recognition. The innovation of
the machine learning and speech recognition community in deep
learning can be easily ported over to the field of speaker recogni-
tion including tools such as convolutional neural networks, language
model decoding, multi-style training, and so on. Moreover, an im-
plicit speech recognition step for speaker recognition also opens up
research to gain more insight in the understanding of the influence
of speech content for speaker recognition.
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